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Abstract
Reactivators of acetylcholinesterase (AChE; EC 3.1.1.7) are able to treat intoxication by organophosphorus compounds,
especially with pesticides or nerve agents. Owing to the fact that there exists no universal “broad-spectrum” reactivator of
organophosphates-inhibited AChE, many laboratories have synthesized new AChE reactivators. Here, we synthesized five
new and three previously known quaternary monopyridinium oximes as potential reactivators of AChE inhibited by nerve
agents. Potencies to cleave p-nitrophenyl acetate (PNPA), which is commonly used as a model substrate of nerve agents, were
measured. Their cleaving potencies were compared with 4-PAM (4-hydroxyiminomethyl-1-methylpyridinium iodide), which
is derived from the structure of the currently used AChE-reactivator 2-PAM (2-hydroxyiminomethyl-1-methylpyridinium
iodide). Three newly synthesized oximes achieved similar nucleophilicity at the similar pKa according to 4-PAM, which is very
promising for using these derivatives as AChE reactivators.

Keywords: Acetylcholinesterase, Reactivator, PNPA, Reactivation, Nerve agents, Inhibition

Introduction

Sarin, soman, tabun and VX belong to the most toxic

synthetic compounds called nerve agents [1,2]. They

irreversibly inhibit the enzyme acetylcholinesterase

(AChE; EC 3.1.1.7). The inhibitory effect is based on

phosphorylation or phosphonylation of a serine

hydroxy group at the esteratic site of the active centre

of the enzyme [3,4].

For the treatment of the toxic effects of these agents,

parasympatolytics (as functional antidotes) and AChE

reactivators (as causal antidotes) are commonly used

[4–7]. Several of these reactivators are currently

applied as first aid-treatment antidotes—pralidoxime

(2-hydroxyiminomethyl-1-methylpyridinium chloride),

obidoxime (1,3-bis(4-hydroxyiminomethylpyridinio)-

2-oxapropane dibromide) and H-oxime HI-6 (1-(2-

hydroxyiminomethylpyridinio)-3-(4-carbamoylpyridi-

nio)-2-oxapropane dichloride) [See Figure 1] [8].

AChE reactivators are chemical substances able to

restore the activity of AChE inhibited by toxic

organophosphates. All of them are powerful nucleo-

philic agents, which can cleave the P–O bond formed

by the reaction of the serine hydroxyl with the

inhibiting reactive organophosphorus compound

[4,5,9]. Structurally most of the reactivators can be

characterized as mono- or bisquaternary pyridinium

salts with one or two aldoxime groups at the

pyridinium rings at positions two or four [10,11].

However, existing reactivators of AChE do not have

sufficient efficacy to reactivate AChE inhibited by all

types of nerve agents [6,12].

The goal of our investigation was to synthesize new

group of AChE reactivators, which differs from the

currently used AChE reactivators in the type of oxime

group; the aldoxime group is replaced by a substituted

ketoxime group. Variation of “substituents” attached

directly on the oxime function could allow dramatical
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changes in oxime group reactivity. Structures of the

synthesized potential AChE reactivators are shown in

Figure 2.

We have evaluated their potency to cleave

p-nitrophenyl acetate (PNPA), which is commonly

used as a model substrate of the nerve agents [13–15].

Their potencies to cleave PNPA were compared with

4-PAM (1; 4-hydroxyiminomethyl-1-methylpyridi-

nium iodide), which is derived from the structure

of the currently used AChE-reactivator 2-PAM

(2-hydroxyiminomethyl-1-methylpyridinium iodide).

Material and methods

Synthesis

Oximes 1, 2 and 3 were prepared by the procedure

published by Ginsburg and Wilson [16] and ketoxime

4 according to Poziomek et al. [17] 4-[Amino-

(hydroxyimino)methyl]-1-methylpyridinium iodide 5

was synthesized by quaternization of one part of

pyridine-4-carboxhydroximamide with two parts of

iodomethane in methanol [18].

1-(4-Pyridyl)propane-1,2-dione-1-oxime 7 was

obtained from ketone 6 by a reaction modified from

the literature [19,20]. The quarternization of com-

pound 7 using iodomethane afforded 4-[1-hydroxy-

imino-2-oxopropyl]-1-methylpyridinium iodide 8

(Scheme 1).

2-Methylsulfonyl(4-pyridyl)ethan-1-one-oxime 10

was prepared by reaction of ketone 9 with hydroxy-

lamine [21]. 4-[1-Hydroxyimino-2-(methylsulfonyl)

ethyl]-1-methyl-pyridinium iodide 11 was obtained

by reaction of compound 10 with iodomethane

(Scheme 2).

N,N-Diethyl-1-(4-pyridylcarbonyl)methanesulfon-

amide 14 and 2-phenylsulphonyl(4-pyridyl)ethan-1-

one 18 were prepared using a modified procedure

according to Brienne et al. [22] by reaction of

ethylisonicotinate 12 and N,N-diethylmethan-

sulfonamide 13,[23] or methylphenylsufone 17 in the

presence of potassium hydride, respectively. Reaction

of 14 or 18 with hydroxylamine gave N,N-diethyl-2-

hydroxyimino-2-(4-pyridyl)ethansulfonamide 15 and

2-phenylsulfonyl-(4-pyridyl)ethan-1-on-oxime 19,

respectively. The quarternization of compounds 15

and 19 using iodomethane afforded 4-[(1-hydroxy-

imino-2-(N,N-(diethylsulfamoyl)ethyl)]-1-methyl-

pyridinium iodide 16 and 4-[(1-hydroxyimino-2-

(phenylsulfonyl)ethyl)]-1-methyl pyridinium iodide

20, respectively (Scheme 3).

The intermediates 7,10,14,15,18,19, and the target

molecules 5,8,11,16,20 were identified by their

melting points (Boetius block), 1H NMR spectra

(Varian Gemini 300; 300 MHz) and by their elemental

analysis (Perkin Elmer CHN Analyser 2400 Serie II):

5: m.p.189–1928C; EA: For C7H10IN3O (279.08)

Calc. C, 30.13; H, 3.61; I, 45.47; N, 15.06; Found C,

29.83; H, 3.51; I, 45.66; N, 14.85%; 1H NMR

(300 MHz, DMSO-d6): d 4.31 (s, 3H, NþCH3), 6.40

(s, 2H, NH2), 8.25 (d, Jð3; 2Þ ¼ Jð5; 6Þ ¼ 6:75 Hz;
2H, H-3 and H-5), 8.95 (d, Jð2; 3Þ ¼ Jð6; 5Þ ¼
6:74 Hz; 2H, H-2 and H-6), 10.90 (s, 1H, NOH).

7: m.p. 205.5–207.58C; EA: For C8H8N2O2

(164.16) Calc. C, 58.53; H, 4.91; N, 17.06; Found.

C, 58.31; H, 4.89; N, 16.88%; 1H NMR (300 MHz,

DMSO-d6): d 2.43 (s, 3H, COCH3), 7.22 (d, Jð3; 2Þ ¼
Jð5; 6Þ ¼ 6:15 Hz; 2H, H-3 and H-5), 8.60(d,

Jð2; 3Þ ¼ Jð6; 5Þ ¼ 6:15 Hz; 2H, H-2 and H-6).

8: m.p. 212–2148C; EA: For C9H11IN2O2

(306.10) Calc. C, 35.31; H, 3.62; I, 41.46; N, 9.15;

Found. C, 35.28, H, 3.55; I, 46.43; N, 8.97%; 1H

NMR (300 MHz, DMSO-d6): d 2.48(s, 3H,

COCH3), 4.35(s, 3H, NþCH3), 8.03 (d, Jð3; 2Þ ¼
Jð5; 6Þ ¼ 6:45 Hz; 2H, H-3 and H-5), 9.02(d,

Jð2; 3Þ ¼ Jð6; 5Þ ¼ 6:75 Hz; 2H, H-2 and H-6).

10: m.p. 222–2258C; EA: For C8H10N2O3S

(214.24) Calc. C, 44.85; H, 4.70; N, 13.08; S,

Figure 1. Structures of the currently used acetylcholinesterase reactivators.

Figure 2. Structures of the synthesized potential AChE reactivators.
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14.92; Found C, 44.80; H, 4.83; N, 13.16;

S, 14.83%; 1H NMR (300 MHz, DMSO-d6): d 3.02

(s, 3H, CH2SO2CH3), 4.79 (s, 2H, CH2SO2CH3),

7.71 (d, Jð3; 2Þ ¼ Jð5; 6Þ ¼ 6:05 Hz; 2H, H-3 and

H-5), 8.59 (d, Jð2; 3Þ ¼ Jð6; 5Þ ¼ 6:05 Hz; 2H, H-2

and H-6).

11: m.p. 190–1938C; EA: For C9H13IN2SO3

(356.18) Calc. C, 30.35; H, 3.68; I, 35.63; N, 7.86;

S, 9.00; Found. C, 30.57; H, 3.87; I, 35.82; N, 7.63;

S, 8.80%; 1H NMR (300 MHz, DMSO-d6):

d 3.07(s, 3H, CH2SO2CH3), 4.31 (s, 3H, NþCH3),

4.96 (s, 2H, CH2SO2CH3), 8.37 (d, Jð3; 2Þ ¼
Jð5; 6Þ ¼ 6:33 Hz; 2H, H-3 and H-5), 8.89

(d, Jð2; 3Þ ¼ Jð6; 5Þ ¼ 6:33 Hz; 2H, H-2 and H-6).

14: m.p. 838C; EA: For C11H16N2SO3 (256.32)

Calc. C, 51.54; H, 6.29; N, 10.93; S, 12.51;

Found C, 51.62; H, 6.49; N, 10.86; S, 12.47%;
1H NMR (300 MHz, CDCl3): d 1.21 (t, J ¼ 7:04 Hz;
6H, SO2N(CH2CH3)2), 3.23 (q, J ¼ 7:33 Hz;
4H, SO2 N(CH2CH3)2, 4.54 (s, 2H, CH2SO2),

7.83 (d, Jð3; 2Þ ¼ Jð5; 6Þ ¼ 6:16 Hz; 2H, H-3 and

H-5), 8.86 (d, Jð2; 3Þ ¼ Jð6; 5Þ ¼ 6:16 Hz; 2H, H-2

and H-6).

15: m.p. 183–1868C; EA: For C11H17N3SO3

(271.34) Calc. C, 48.69; H, 6.32; N, 15.49; S, 11.82;

FoundC,48.47;H,6.39;N,15.19;S,11.58%;1HNMR

(300 MHz, DMSO-d6): d 1.07(t, J ¼ 7:04 Hz; 6H,

SO2N(CH2CH3)2), 3.21 (q, J ¼ 7:03 Hz; 4H, SO2-

N(CH2CH3)2), 4.67 (s, 2H, CH2SO2), 7.69

(d, Jð3; 2Þ ¼ Jð5; 6Þ ¼ 5:57 Hz; 2H, H-3 and H-5),

8.59 (d, Jð2; 3Þ ¼ Jð6; 5Þ ¼ 5:57 Hz; 2H, H-2 and H-6),

12.55 (s, 1H, NOH).

16: m.p. 152–1558C; EA: For C11H17IN3SO3

(413.27) Calc. C, 34.87; H, 4.88; I, 30.71; N,

10.17; S, 7.76; Found C, 34.75; H, 4.81; I, 30.54;

N, 9.92; S, 7.70%; 1H NMR (300 MHz, DMSO-d6):

d 1.08(t, J ¼ 7:04 Hz; 6H, SO2N(CH2CH3)2), 3.16

(q, J ¼ 7:04 Hz; 4H, SO2N(CH2CH3)2), 4.32 (s, 3H,

NþCH3), 4.82 (s, 2H, CH2SO2), 8.34 (d, Jð3; 2Þ ¼
Jð5; 6Þ ¼ 7:04 Hz; 2H, H-3 and H-5), 8.97

(d, Jð2; 3Þ ¼ Jð6; 5Þ ¼ 6:75 Hz; 2H, H-2 and H-6),

13.51 (s, 1H, NOH).

18: m.p. 153–1568C; EA: For C13H11NSO3

(261.30) Calc. C, 59.76; H, 4.24; N, 5.36; S, 12.27;

Found. C, 59.63; H, 4.24; N, 5.15; S, 12.22%;
1H NMR (300 MHz, DMSO-d6): d 5.38 (s, 2H,

CH2SO2C6H5), 7.62 (m, 2H, H-30 and H-50), 7.72

(m, 1H, H-40), 7.79 (d, 2H, Jð3; 2Þ ¼ Jð5; 6Þ ¼
6:15 Hz; 2H, H-3 and H-5), 7.89 (m, 2H, H-20 and

H-60), 8.78 (d, Jð2; 3Þ ¼ Jð6; 5Þ ¼ 6:15 Hz; 2H, H-2

and H-6).

19: m.p. 226–228.58C; EA: For C13H12N2SO3

(276.31) Calc. C, 56.51; H, 4.38; N, 10.14; S, 11.60;

Found. C, 56.25; H, 4.31; N, 9.96; S, 11.71%;
1H NMR (300 MHz, DMSO-d6): d 4.96 (s, 2H, CH2

SO2C6H5), 7.65 (m, 7H, H-3, H-5, H-20,H-60, H-30,

H-50and H-40), 8.53 (d, Jð2; 3Þ ¼ Jð6; 5Þ ¼ 5:57 Hz;
2H, H-2 and H-6), 12.30(s, 1H, NOH).

20: m.p. 202–2068C; EA: For C14H15IN2SO3

(418.25) Calc. C, 40.20; H, 3.61; I, 30.34; N, 6.70; S,

7.67; Found. C, 40.17, H, 3.51; I, 30.49; N, 6.42; S,

7.75; 1H NMR (300 MHz, DMSO-d6): d 4.32 (s, 3H,

NþCH3), 5.12 (s, 2H, CH2SO2C6H5), 7.62 (m, 2H,

H-30 and H-50); 7.78 (m, 3H, H-20, H-60 and H-40),

8.34 (d, 2H, Jð3; 2Þ ¼ Jð5; 6Þ ¼ 6:74 Hz; 2H, H-3 and

H-5), 8.96 (d, Jð2; 3Þ ¼ Jð6; 5Þ ¼ 6:74 Hz; 2H, H-2

and H-6), 13.21 (s, 1H, NOH).

Kinetic measurement

Cleavage of PNPA was observed spectrophotometri-

cally using the standard test [24–26]. Concentration of

4-nitrophenoxide anion was monitored at 400 nm. The

rate constants kobs [s21] were obtained by nonlinear

regression analysis of the absorbance vs time data.

All kinetic measurements were carried out under

pseudo-first-order conditions (cPNPA ! coxime) at 258C,

pH ¼ 7:5 in the cell was maintained by the

biological buffer HEPES. The concentration of the

oximate anion [OX2] was calculated using equation (1);

½OX2� ¼ cox·K a=ð½H
þ� þK aÞ ð1Þ

where cox is the analytical concentration of the oxime

and Ka is the dissociation constant of the oxime. k2

[s21 l mol21] values were obtained from the kobs vs

[OX2] plots by linear regression. The slope of these

plots represent P the formal second-order rate constants

Scheme 1. Preparation of 4-[1-hydroxyimino-2-oxopropyl]-1-

methyl-pyridinium iodide 8

Scheme 2. Preparation of the 4-[1-hydroxyimino-2-(methylsul

fonyl)ethyl]-1-methyl-pyridinium iodide 11.
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k2 for the cleavage, revealing thus the nucleophilicity of

the oximate anions [OX2].

Results and discussion

Owing to the fact, that none of the currently used

AChE reactivators reactivates AChE inhibited by all

types of nerve agents [18], searching for a new AChE

reactivator, which could reactivate AChE inhibited by

a broad spectrum of nerve agents, is needed [7]. That

was reason why we have synthesized some new AChE

reactivators and tested their potency to cleave PNPA,

which is commonly used as a model substrate of the

nerve agents [8].

The constantsk2 and pKa values for the tested oximes

are shown in Table I. Bröensted plot was designed

from the dependence of k2 (logarithmic scale) on pKa.

As can be seen from the plot (Figure 3), the shape of

the dependence is characterized as a typical curve

for oxime-induced cleavage of PNPA [15,25]. The

dependence curve consists of two parts. The first part

covers the range of pKa from 4 to 8 and the slope is 0.7

whereas the second part covers less acidic oximes

(pKa range from 8–10) and the slope is almost parallel

with the x axis.

Compounds 11, 16 and 20 (pKa about 8) appear to

be the most prospective cleavage agents. As it can be

seen from the Figure 3 and Table I, they have a

relatively acidic oxime group which guaranties a high

concentration of nucleophilic oximate. Moreover,

these oximates show the highest accessible nucleo-

philicity towards PNPA in the oxime series, studied.

In conclusion, we have synthesized a new group of

monoquaternary reactivators of AChE inhibited by

nerve agents. Three newly synthesized oximes 11, 16

and 20 achieved similar nucleophilicity at the

similar pKa according to 4-PAM (1; 4-homologue of

currently used AChE reactivator 2-PAM), which is

very promising for using these derivatives as AChE

reactivators. Their reactivation potencies will be tested

using standard reactivation in vitro [2,7,28] and in vivo

tests [29].

Scheme 3. Preparationof 4-[(1-hydroxyimino-2-N,N-(diethylaminosulfamoyl)ethyl)]-1-methyl-pyridinium iodide16and4-[(1-hydroxyimino-

2-(phenylsulfonyl)ethyl)]-1-methyl pyridinium iodide 20.

Figure 3. Bröensted plot of oxime-induced cleavage of PNPA.

Table I. Reaction constants k2 [s21 l mol21] and pKa values of the

synthesized oximes.

Oxime pKa k2

1 8.34 47.3 ^ 0.4

2 9.18 68.1 ^ 0.5

3 9.11 59.5 ^ 0.5

4 4.71 3.17 · 1022 ^ 0.01 · 1022

5 10.05 66.1 ^ 0.5

8 6.79 6.4 ^ 0.1

11 7.59 25.6 ^ 0.4

16 8.11 49.2 ^ 0.8

20 7.65 26.3 ^ 0.5
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